| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspun0.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspun0.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | lspun0.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspun0.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lspun0.x | ⊢ ( 𝜑  →  𝑋  ⊆  𝑉 ) | 
						
							| 6 | 1 2 | lmod0vcl | ⊢ ( 𝑊  ∈  LMod  →   0   ∈  𝑉 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →   0   ∈  𝑉 ) | 
						
							| 8 | 7 | snssd | ⊢ ( 𝜑  →  {  0  }  ⊆  𝑉 ) | 
						
							| 9 | 1 3 | lspun | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ⊆  𝑉  ∧  {  0  }  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑋  ∪  {  0  } ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 )  ∪  ( 𝑁 ‘ {  0  } ) ) ) ) | 
						
							| 10 | 4 5 8 9 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑋  ∪  {  0  } ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 )  ∪  ( 𝑁 ‘ {  0  } ) ) ) ) | 
						
							| 11 | 2 3 | lspsn0 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑁 ‘ {  0  } )  =  {  0  } ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  ( 𝑁 ‘ {  0  } )  =  {  0  } ) | 
						
							| 13 | 12 | uneq2d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  ∪  ( 𝑁 ‘ {  0  } ) )  =  ( ( 𝑁 ‘ 𝑋 )  ∪  {  0  } ) ) | 
						
							| 14 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 15 | 1 14 3 | lspcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ⊆  𝑉 )  →  ( 𝑁 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 17 | 2 14 | lss0ss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑁 ‘ 𝑋 )  ∈  ( LSubSp ‘ 𝑊 ) )  →  {  0  }  ⊆  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 18 | 4 16 17 | syl2anc | ⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 19 |  | ssequn2 | ⊢ ( {  0  }  ⊆  ( 𝑁 ‘ 𝑋 )  ↔  ( ( 𝑁 ‘ 𝑋 )  ∪  {  0  } )  =  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  ∪  {  0  } )  =  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 21 | 13 20 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 )  ∪  ( 𝑁 ‘ {  0  } ) )  =  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 )  ∪  ( 𝑁 ‘ {  0  } ) ) )  =  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 23 | 1 3 | lspidm | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 24 | 4 5 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑋 )  ∪  ( 𝑁 ‘ {  0  } ) ) )  =  ( 𝑁 ‘ 𝑋 ) ) | 
						
							| 26 | 10 25 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑋  ∪  {  0  } ) )  =  ( 𝑁 ‘ 𝑋 ) ) |