| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lss0cl.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lss0cl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
2
|
lssn0 |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ≠ ∅ ) |
| 4 |
|
n0 |
⊢ ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑈 ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝑈 ∈ 𝑆 → ∃ 𝑥 𝑥 ∈ 𝑈 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∃ 𝑥 𝑥 ∈ 𝑈 ) |
| 7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 9 |
8 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 10 |
9
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 11 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 12 |
8 1 11
|
lmodsubid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) = 0 ) |
| 13 |
7 10 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) = 0 ) |
| 14 |
11 2
|
lssvsubcl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) ∈ 𝑈 ) |
| 15 |
14
|
anabsan2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) ∈ 𝑈 ) |
| 16 |
15
|
3impa |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) ∈ 𝑈 ) |
| 17 |
13 16
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 0 ∈ 𝑈 ) |
| 18 |
17
|
3expia |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑈 → 0 ∈ 𝑈 ) ) |
| 19 |
18
|
exlimdv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ∃ 𝑥 𝑥 ∈ 𝑈 → 0 ∈ 𝑈 ) ) |
| 20 |
6 19
|
mpd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 0 ∈ 𝑈 ) |