| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lss0v.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | lss0v.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | lss0v.z | ⊢ 𝑍  =  ( 0g ‘ 𝑋 ) | 
						
							| 4 |  | lss0v.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 5 |  | 0ss | ⊢ ∅  ⊆  𝑈 | 
						
							| 6 |  | eqid | ⊢ ( LSpan ‘ 𝑊 )  =  ( LSpan ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( LSpan ‘ 𝑋 )  =  ( LSpan ‘ 𝑋 ) | 
						
							| 8 | 1 6 7 4 | lsslsp | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿  ∧  ∅  ⊆  𝑈 )  →  ( ( LSpan ‘ 𝑋 ) ‘ ∅ )  =  ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) | 
						
							| 9 | 5 8 | mp3an3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  ( ( LSpan ‘ 𝑋 ) ‘ ∅ )  =  ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) | 
						
							| 10 | 1 4 | lsslmod | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  𝑋  ∈  LMod ) | 
						
							| 11 | 3 7 | lsp0 | ⊢ ( 𝑋  ∈  LMod  →  ( ( LSpan ‘ 𝑋 ) ‘ ∅ )  =  { 𝑍 } ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  ( ( LSpan ‘ 𝑋 ) ‘ ∅ )  =  { 𝑍 } ) | 
						
							| 13 | 2 6 | lsp0 | ⊢ ( 𝑊  ∈  LMod  →  ( ( LSpan ‘ 𝑊 ) ‘ ∅ )  =  {  0  } ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  ( ( LSpan ‘ 𝑊 ) ‘ ∅ )  =  {  0  } ) | 
						
							| 15 | 9 12 14 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  { 𝑍 }  =  {  0  } ) | 
						
							| 16 | 15 | unieqd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  ∪  { 𝑍 }  =  ∪  {  0  } ) | 
						
							| 17 | 3 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 18 | 17 | unisn | ⊢ ∪  { 𝑍 }  =  𝑍 | 
						
							| 19 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 20 | 19 | unisn | ⊢ ∪  {  0  }  =   0 | 
						
							| 21 | 16 18 20 | 3eqtr3g | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝐿 )  →  𝑍  =   0  ) |