| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lssss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 5 |
1
|
a1i |
⊢ ( 𝑊 ∈ LMod → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 6 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) |
| 7 |
|
eqidd |
⊢ ( 𝑊 ∈ LMod → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 8 |
2
|
a1i |
⊢ ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
| 9 |
|
ssidd |
⊢ ( 𝑊 ∈ LMod → 𝑉 ⊆ 𝑉 ) |
| 10 |
1
|
lmodbn0 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ ) |
| 11 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 15 |
1 12 13 14
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ) |
| 16 |
15
|
3adant3r3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ) |
| 17 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
| 18 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 19 |
1 18
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑉 ) |
| 20 |
11 16 17 19
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑉 ) |
| 21 |
3 4 5 6 7 8 9 10 20
|
islssd |
⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |