| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssacs.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lssacs.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 | 1 2 | lssss | ⊢ ( 𝑎  ∈  𝑆  →  𝑎  ⊆  𝐵 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑎  ∈  𝑆  →  𝑎  ⊆  𝐵 ) ) | 
						
							| 5 |  | inss2 | ⊢ ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  ⊆  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ⊆  𝒫  𝐵 | 
						
							| 7 | 5 6 | sstri | ⊢ ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  ⊆  𝒫  𝐵 | 
						
							| 8 | 7 | sseli | ⊢ ( 𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  →  𝑎  ∈  𝒫  𝐵 ) | 
						
							| 9 | 8 | elpwid | ⊢ ( 𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  →  𝑎  ⊆  𝐵 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  →  𝑎  ⊆  𝐵 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 14 | 11 12 1 13 2 | islss4 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑎  ∈  𝑆  ↔  ( 𝑎  ∈  ( SubGrp ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑎  ⊆  𝐵 )  →  ( 𝑎  ∈  𝑆  ↔  ( 𝑎  ∈  ( SubGrp ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) ) | 
						
							| 16 |  | velpw | ⊢ ( 𝑎  ∈  𝒫  𝐵  ↔  𝑎  ⊆  𝐵 ) | 
						
							| 17 |  | eleq2w | ⊢ ( 𝑏  =  𝑎  →  ( ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏  ↔  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) | 
						
							| 18 | 17 | raleqbi1dv | ⊢ ( 𝑏  =  𝑎  →  ( ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏  ↔  ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑏  =  𝑎  →  ( ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏  ↔  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) | 
						
							| 20 | 19 | elrab3 | ⊢ ( 𝑎  ∈  𝒫  𝐵  →  ( 𝑎  ∈  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ↔  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) | 
						
							| 21 | 16 20 | sylbir | ⊢ ( 𝑎  ⊆  𝐵  →  ( 𝑎  ∈  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ↔  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑎  ⊆  𝐵 )  →  ( 𝑎  ∈  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ↔  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑎  ⊆  𝐵 )  →  ( ( 𝑎  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑎  ∈  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  ↔  ( 𝑎  ∈  ( SubGrp ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑎 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑎 ) ) ) | 
						
							| 24 | 15 23 | bitr4d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑎  ⊆  𝐵 )  →  ( 𝑎  ∈  𝑆  ↔  ( 𝑎  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑎  ∈  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } ) ) ) | 
						
							| 25 |  | elin | ⊢ ( 𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  ↔  ( 𝑎  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑎  ∈  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } ) ) | 
						
							| 26 | 24 25 | bitr4di | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑎  ⊆  𝐵 )  →  ( 𝑎  ∈  𝑆  ↔  𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑎  ⊆  𝐵  →  ( 𝑎  ∈  𝑆  ↔  𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } ) ) ) ) | 
						
							| 28 | 4 10 27 | pm5.21ndd | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑎  ∈  𝑆  ↔  𝑎  ∈  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } ) ) ) | 
						
							| 29 | 28 | eqrdv | ⊢ ( 𝑊  ∈  LMod  →  𝑆  =  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } ) ) | 
						
							| 30 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 31 |  | mreacs | ⊢ ( 𝐵  ∈  V  →  ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 ) ) | 
						
							| 32 | 30 31 | mp1i | ⊢ ( 𝑊  ∈  LMod  →  ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 ) ) | 
						
							| 33 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 34 | 1 | subgacs | ⊢ ( 𝑊  ∈  Grp  →  ( SubGrp ‘ 𝑊 )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝑊  ∈  LMod  →  ( SubGrp ‘ 𝑊 )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 36 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 37 | 36 | 3expb | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 38 | 37 | ralrimivva | ⊢ ( 𝑊  ∈  LMod  →  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝐵 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 39 |  | acsfn1c | ⊢ ( ( 𝐵  ∈  V  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝐵 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝐵 )  →  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 40 | 30 38 39 | sylancr | ⊢ ( 𝑊  ∈  LMod  →  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 41 |  | mreincl | ⊢ ( ( ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 )  ∧  ( SubGrp ‘ 𝑊 )  ∈  ( ACS ‘ 𝐵 )  ∧  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 }  ∈  ( ACS ‘ 𝐵 ) )  →  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 42 | 32 35 40 41 | syl3anc | ⊢ ( 𝑊  ∈  LMod  →  ( ( SubGrp ‘ 𝑊 )  ∩  { 𝑏  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑏 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑏 } )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 43 | 29 42 | eqeltrd | ⊢ ( 𝑊  ∈  LMod  →  𝑆  ∈  ( ACS ‘ 𝐵 ) ) |