| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssats2.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 2 |  | lssats2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lssats2.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 4 |  | lssats2.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑈 )  →  𝑦  ∈  𝑈 ) | 
						
							| 6 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑈 )  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 8 | 7 1 | lssel | ⊢ ( ( 𝑈  ∈  𝑆  ∧  𝑦  ∈  𝑈 )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 9 | 4 8 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑈 )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 10 | 7 2 | lspsnid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  𝑦  ∈  ( 𝑁 ‘ { 𝑦 } ) ) | 
						
							| 11 | 6 9 10 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑈 )  →  𝑦  ∈  ( 𝑁 ‘ { 𝑦 } ) ) | 
						
							| 12 |  | sneq | ⊢ ( 𝑥  =  𝑦  →  { 𝑥 }  =  { 𝑦 } ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑁 ‘ { 𝑥 } )  =  ( 𝑁 ‘ { 𝑦 } ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } )  ↔  𝑦  ∈  ( 𝑁 ‘ { 𝑦 } ) ) ) | 
						
							| 15 | 14 | rspcev | ⊢ ( ( 𝑦  ∈  𝑈  ∧  𝑦  ∈  ( 𝑁 ‘ { 𝑦 } ) )  →  ∃ 𝑥  ∈  𝑈 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 16 | 5 11 15 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑈 )  →  ∃ 𝑥  ∈  𝑈 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑈  →  ∃ 𝑥  ∈  𝑈 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝑊  ∈  LMod ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝑈  ∈  𝑆 ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝑥  ∈  𝑈 ) | 
						
							| 21 | 1 2 18 19 20 | ellspsn5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  ( 𝑁 ‘ { 𝑥 } )  ⊆  𝑈 ) | 
						
							| 22 | 21 | sseld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  ( 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } )  →  𝑦  ∈  𝑈 ) ) | 
						
							| 23 | 22 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑈 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } )  →  𝑦  ∈  𝑈 ) ) | 
						
							| 24 | 17 23 | impbid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑈  ↔  ∃ 𝑥  ∈  𝑈 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 25 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝑈 ( 𝑁 ‘ { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝑈 𝑦  ∈  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 26 | 24 25 | bitr4di | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑈  ↔  𝑦  ∈  ∪  𝑥  ∈  𝑈 ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 27 | 26 | eqrdv | ⊢ ( 𝜑  →  𝑈  =  ∪  𝑥  ∈  𝑈 ( 𝑁 ‘ { 𝑥 } ) ) |