Step |
Hyp |
Ref |
Expression |
1 |
|
lssbn.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
lssbn.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lssbn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
4 |
|
bnnvc |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) |
5 |
1 2
|
lssnvc |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
1 7
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
10 |
7
|
bnsca |
⊢ ( 𝑊 ∈ Ban → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
11 |
10
|
adantr |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
12 |
9 11
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) |
13 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
14 |
13
|
isbn |
⊢ ( 𝑋 ∈ Ban ↔ ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ) |
15 |
|
3anan32 |
⊢ ( ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ↔ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ∧ 𝑋 ∈ CMetSp ) ) |
16 |
14 15
|
bitri |
⊢ ( 𝑋 ∈ Ban ↔ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ∧ 𝑋 ∈ CMetSp ) ) |
17 |
16
|
baib |
⊢ ( ( 𝑋 ∈ NrmVec ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) → ( 𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp ) ) |
18 |
6 12 17
|
syl2anc |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp ) ) |
19 |
|
bncms |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
21 |
20 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
22 |
1 20 3
|
cmsss |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑋 ∈ CMetSp ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |
23 |
19 21 22
|
syl2an |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ CMetSp ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |
24 |
18 23
|
bitrd |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ Ban ↔ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |