| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssbn.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | lssbn.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lssbn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 4 |  | bnnvc | ⊢ ( 𝑊  ∈  Ban  →  𝑊  ∈  NrmVec ) | 
						
							| 5 | 1 2 | lssnvc | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmVec ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmVec ) | 
						
							| 7 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 8 | 1 7 | resssca | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 10 | 7 | bnsca | ⊢ ( 𝑊  ∈  Ban  →  ( Scalar ‘ 𝑊 )  ∈  CMetSp ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  ∈  CMetSp ) | 
						
							| 12 | 9 11 | eqeltrrd | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) | 
						
							| 13 |  | eqid | ⊢ ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) | 
						
							| 14 | 13 | isbn | ⊢ ( 𝑋  ∈  Ban  ↔  ( 𝑋  ∈  NrmVec  ∧  𝑋  ∈  CMetSp  ∧  ( Scalar ‘ 𝑋 )  ∈  CMetSp ) ) | 
						
							| 15 |  | 3anan32 | ⊢ ( ( 𝑋  ∈  NrmVec  ∧  𝑋  ∈  CMetSp  ∧  ( Scalar ‘ 𝑋 )  ∈  CMetSp )  ↔  ( ( 𝑋  ∈  NrmVec  ∧  ( Scalar ‘ 𝑋 )  ∈  CMetSp )  ∧  𝑋  ∈  CMetSp ) ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( 𝑋  ∈  Ban  ↔  ( ( 𝑋  ∈  NrmVec  ∧  ( Scalar ‘ 𝑋 )  ∈  CMetSp )  ∧  𝑋  ∈  CMetSp ) ) | 
						
							| 17 | 16 | baib | ⊢ ( ( 𝑋  ∈  NrmVec  ∧  ( Scalar ‘ 𝑋 )  ∈  CMetSp )  →  ( 𝑋  ∈  Ban  ↔  𝑋  ∈  CMetSp ) ) | 
						
							| 18 | 6 12 17 | syl2anc | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  ( 𝑋  ∈  Ban  ↔  𝑋  ∈  CMetSp ) ) | 
						
							| 19 |  | bncms | ⊢ ( 𝑊  ∈  Ban  →  𝑊  ∈  CMetSp ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 21 | 20 2 | lssss | ⊢ ( 𝑈  ∈  𝑆  →  𝑈  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 22 | 1 20 3 | cmsss | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑈  ⊆  ( Base ‘ 𝑊 ) )  →  ( 𝑋  ∈  CMetSp  ↔  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 23 | 19 21 22 | syl2an | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  ( 𝑋  ∈  CMetSp  ↔  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 24 | 18 23 | bitrd | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑈  ∈  𝑆 )  →  ( 𝑋  ∈  Ban  ↔  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) ) |