Step |
Hyp |
Ref |
Expression |
1 |
|
lsscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lsscl.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
lsscl.p |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
lsscl.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
lsscl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
7 |
1 2 6 3 4 5
|
islss |
⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
8 |
7
|
simp3bi |
⊢ ( 𝑈 ∈ 𝑆 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑍 → ( 𝑥 · 𝑎 ) = ( 𝑍 · 𝑎 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑍 · 𝑎 ) + 𝑏 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑎 = 𝑋 → ( 𝑍 · 𝑎 ) = ( 𝑍 · 𝑋 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑍 · 𝑎 ) + 𝑏 ) = ( ( 𝑍 · 𝑋 ) + 𝑏 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑍 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑋 ) + 𝑏 ) ∈ 𝑈 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑍 · 𝑋 ) + 𝑏 ) = ( ( 𝑍 · 𝑋 ) + 𝑌 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑍 · 𝑋 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) ) |
17 |
11 14 16
|
rspc3v |
⊢ ( ( 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) ) |
18 |
8 17
|
mpan9 |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑍 · 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |