| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssintcl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 2 |  | intprg | ⊢ ( ( 𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  ∩  { 𝑇 ,  𝑈 }  =  ( 𝑇  ∩  𝑈 ) ) | 
						
							| 3 | 2 | 3adant1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  ∩  { 𝑇 ,  𝑈 }  =  ( 𝑇  ∩  𝑈 ) ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | prssi | ⊢ ( ( 𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  { 𝑇 ,  𝑈 }  ⊆  𝑆 ) | 
						
							| 6 | 5 | 3adant1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  { 𝑇 ,  𝑈 }  ⊆  𝑆 ) | 
						
							| 7 |  | prnzg | ⊢ ( 𝑇  ∈  𝑆  →  { 𝑇 ,  𝑈 }  ≠  ∅ ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  { 𝑇 ,  𝑈 }  ≠  ∅ ) | 
						
							| 9 | 1 | lssintcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  { 𝑇 ,  𝑈 }  ⊆  𝑆  ∧  { 𝑇 ,  𝑈 }  ≠  ∅ )  →  ∩  { 𝑇 ,  𝑈 }  ∈  𝑆 ) | 
						
							| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  ∩  { 𝑇 ,  𝑈 }  ∈  𝑆 ) | 
						
							| 11 | 3 10 | eqeltrrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ∈  𝑆  ∧  𝑈  ∈  𝑆 )  →  ( 𝑇  ∩  𝑈 )  ∈  𝑆 ) |