Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
Assertion | lssle0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ⊆ { 0 } ↔ 𝑋 = { 0 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
2 | lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
3 | 1 2 | lss0ss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → { 0 } ⊆ 𝑋 ) |
4 | 3 | biantrud | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ⊆ { 0 } ↔ ( 𝑋 ⊆ { 0 } ∧ { 0 } ⊆ 𝑋 ) ) ) |
5 | eqss | ⊢ ( 𝑋 = { 0 } ↔ ( 𝑋 ⊆ { 0 } ∧ { 0 } ⊆ 𝑋 ) ) | |
6 | 4 5 | bitr4di | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ⊆ { 0 } ↔ 𝑋 = { 0 } ) ) |