Metamath Proof Explorer


Theorem lsslmod

Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lsslss.x 𝑋 = ( 𝑊s 𝑈 )
lsslss.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lsslmod ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑋 ∈ LMod )

Proof

Step Hyp Ref Expression
1 lsslss.x 𝑋 = ( 𝑊s 𝑈 )
2 lsslss.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 1 3 2 islss3 ( 𝑊 ∈ LMod → ( 𝑈𝑆 ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑋 ∈ LMod ) ) )
5 4 simplbda ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑋 ∈ LMod )