Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsslss.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
lsslss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
Assertion | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsslss.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
2 | lsslss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
4 | 1 3 2 | islss3 | ⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑋 ∈ LMod ) ) ) |
5 | 4 | simplbda | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |