Step |
Hyp |
Ref |
Expression |
1 |
|
lsslvec.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
lsslvec.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
4 |
1 2
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
7 |
1 6
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
9 |
6
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
11 |
8 10
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ DivRing ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
13 |
12
|
islvec |
⊢ ( 𝑋 ∈ LVec ↔ ( 𝑋 ∈ LMod ∧ ( Scalar ‘ 𝑋 ) ∈ DivRing ) ) |
14 |
5 11 13
|
sylanbrc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |