Metamath Proof Explorer
Description: The subspaces of a module comprise a Moore system on the vectors of the
module. (Contributed by Stefan O'Rear, 31-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
lssacs.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
|
|
lssacs.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
|
Assertion |
lssmre |
⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ ( Moore ‘ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lssacs.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
lssacs.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
1 2
|
lssss |
⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ⊆ 𝐵 ) |
4 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵 ) |
5 |
3 4
|
sylibr |
⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ 𝒫 𝐵 ) |
6 |
5
|
a1i |
⊢ ( 𝑊 ∈ LMod → ( 𝑎 ∈ 𝑆 → 𝑎 ∈ 𝒫 𝐵 ) ) |
7 |
6
|
ssrdv |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ 𝒫 𝐵 ) |
8 |
1 2
|
lss1 |
⊢ ( 𝑊 ∈ LMod → 𝐵 ∈ 𝑆 ) |
9 |
2
|
lssintcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝑆 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ 𝑆 ) |
10 |
7 8 9
|
ismred |
⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ ( Moore ‘ 𝐵 ) ) |