Metamath Proof Explorer


Theorem lssmre

Description: The subspaces of a module comprise a Moore system on the vectors of the module. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses lssacs.b 𝐵 = ( Base ‘ 𝑊 )
lssacs.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lssmre ( 𝑊 ∈ LMod → 𝑆 ∈ ( Moore ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lssacs.b 𝐵 = ( Base ‘ 𝑊 )
2 lssacs.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 1 2 lssss ( 𝑎𝑆𝑎𝐵 )
4 velpw ( 𝑎 ∈ 𝒫 𝐵𝑎𝐵 )
5 3 4 sylibr ( 𝑎𝑆𝑎 ∈ 𝒫 𝐵 )
6 5 a1i ( 𝑊 ∈ LMod → ( 𝑎𝑆𝑎 ∈ 𝒫 𝐵 ) )
7 6 ssrdv ( 𝑊 ∈ LMod → 𝑆 ⊆ 𝒫 𝐵 )
8 1 2 lss1 ( 𝑊 ∈ LMod → 𝐵𝑆 )
9 2 lssintcl ( ( 𝑊 ∈ LMod ∧ 𝑎𝑆𝑎 ≠ ∅ ) → 𝑎𝑆 )
10 7 8 9 ismred ( 𝑊 ∈ LMod → 𝑆 ∈ ( Moore ‘ 𝐵 ) )