| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lss0cl.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 2 |  | lss0cl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 | 2 | lssn0 | ⊢ ( 𝑋  ∈  𝑆  →  𝑋  ≠  ∅ ) | 
						
							| 4 |  | eqsn | ⊢ ( 𝑋  ≠  ∅  →  ( 𝑋  =  {  0  }  ↔  ∀ 𝑦  ∈  𝑋 𝑦  =   0  ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑋  ∈  𝑆  →  ( 𝑋  =  {  0  }  ↔  ∀ 𝑦  ∈  𝑋 𝑦  =   0  ) ) | 
						
							| 6 |  | nne | ⊢ ( ¬  𝑦  ≠   0   ↔  𝑦  =   0  ) | 
						
							| 7 | 6 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑋 ¬  𝑦  ≠   0   ↔  ∀ 𝑦  ∈  𝑋 𝑦  =   0  ) | 
						
							| 8 |  | ralnex | ⊢ ( ∀ 𝑦  ∈  𝑋 ¬  𝑦  ≠   0   ↔  ¬  ∃ 𝑦  ∈  𝑋 𝑦  ≠   0  ) | 
						
							| 9 | 7 8 | bitr3i | ⊢ ( ∀ 𝑦  ∈  𝑋 𝑦  =   0   ↔  ¬  ∃ 𝑦  ∈  𝑋 𝑦  ≠   0  ) | 
						
							| 10 | 5 9 | bitr2di | ⊢ ( 𝑋  ∈  𝑆  →  ( ¬  ∃ 𝑦  ∈  𝑋 𝑦  ≠   0   ↔  𝑋  =  {  0  } ) ) | 
						
							| 11 | 10 | necon1abid | ⊢ ( 𝑋  ∈  𝑆  →  ( 𝑋  ≠  {  0  }  ↔  ∃ 𝑦  ∈  𝑋 𝑦  ≠   0  ) ) |