Metamath Proof Explorer


Theorem lssne0

Description: A nonzero subspace has a nonzero vector. ( shne0i analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lss0cl.z 0 = ( 0g𝑊 )
lss0cl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lssne0 ( 𝑋𝑆 → ( 𝑋 ≠ { 0 } ↔ ∃ 𝑦𝑋 𝑦0 ) )

Proof

Step Hyp Ref Expression
1 lss0cl.z 0 = ( 0g𝑊 )
2 lss0cl.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 2 lssn0 ( 𝑋𝑆𝑋 ≠ ∅ )
4 eqsn ( 𝑋 ≠ ∅ → ( 𝑋 = { 0 } ↔ ∀ 𝑦𝑋 𝑦 = 0 ) )
5 3 4 syl ( 𝑋𝑆 → ( 𝑋 = { 0 } ↔ ∀ 𝑦𝑋 𝑦 = 0 ) )
6 nne ( ¬ 𝑦0𝑦 = 0 )
7 6 ralbii ( ∀ 𝑦𝑋 ¬ 𝑦0 ↔ ∀ 𝑦𝑋 𝑦 = 0 )
8 ralnex ( ∀ 𝑦𝑋 ¬ 𝑦0 ↔ ¬ ∃ 𝑦𝑋 𝑦0 )
9 7 8 bitr3i ( ∀ 𝑦𝑋 𝑦 = 0 ↔ ¬ ∃ 𝑦𝑋 𝑦0 )
10 5 9 bitr2di ( 𝑋𝑆 → ( ¬ ∃ 𝑦𝑋 𝑦0𝑋 = { 0 } ) )
11 10 necon1abid ( 𝑋𝑆 → ( 𝑋 ≠ { 0 } ↔ ∃ 𝑦𝑋 𝑦0 ) )