Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lssneln0
Metamath Proof Explorer
Description: A vector X which doesn't belong to a subspace U is nonzero.
(Contributed by NM , 14-May-2015) (Revised by AV , 17-Jul-2022) (Proof
shortened by AV , 19-Jul-2022)
Ref
Expression
Hypotheses
lssneln0.o
⊢ 0 = ( 0g ‘ 𝑊 )
lssneln0.s
⊢ 𝑆 = ( LSubSp ‘ 𝑊 )
lssneln0.w
⊢ ( 𝜑 → 𝑊 ∈ LMod )
lssneln0.u
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 )
lssneln0.x
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 )
lssneln0.n
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 )
Assertion
lssneln0
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Proof
Step
Hyp
Ref
Expression
1
lssneln0.o
⊢ 0 = ( 0g ‘ 𝑊 )
2
lssneln0.s
⊢ 𝑆 = ( LSubSp ‘ 𝑊 )
3
lssneln0.w
⊢ ( 𝜑 → 𝑊 ∈ LMod )
4
lssneln0.u
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 )
5
lssneln0.x
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 )
6
lssneln0.n
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 )
7
1 2 3 4 6
lssvneln0
⊢ ( 𝜑 → 𝑋 ≠ 0 )
8
eldifsn
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) )
9
5 7 8
sylanbrc
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )