Metamath Proof Explorer


Theorem lssneln0

Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 17-Jul-2022) (Proof shortened by AV, 19-Jul-2022)

Ref Expression
Hypotheses lssneln0.o 0 = ( 0g𝑊 )
lssneln0.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssneln0.w ( 𝜑𝑊 ∈ LMod )
lssneln0.u ( 𝜑𝑈𝑆 )
lssneln0.x ( 𝜑𝑋𝑉 )
lssneln0.n ( 𝜑 → ¬ 𝑋𝑈 )
Assertion lssneln0 ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 lssneln0.o 0 = ( 0g𝑊 )
2 lssneln0.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lssneln0.w ( 𝜑𝑊 ∈ LMod )
4 lssneln0.u ( 𝜑𝑈𝑆 )
5 lssneln0.x ( 𝜑𝑋𝑉 )
6 lssneln0.n ( 𝜑 → ¬ 𝑋𝑈 )
7 1 2 3 4 6 lssvneln0 ( 𝜑𝑋0 )
8 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋𝑉𝑋0 ) )
9 5 7 8 sylanbrc ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )