| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssnle.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
lssnle.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 |
|
lssnle.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
1
|
lsmss2b |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
| 6 |
|
eqcom |
⊢ ( ( 𝑇 ⊕ 𝑈 ) = 𝑇 ↔ 𝑇 = ( 𝑇 ⊕ 𝑈 ) ) |
| 7 |
5 6
|
bitrdi |
⊢ ( 𝜑 → ( 𝑈 ⊆ 𝑇 ↔ 𝑇 = ( 𝑇 ⊕ 𝑈 ) ) ) |
| 8 |
7
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 9 |
1
|
lsmub1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 10 |
2 3 9
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 11 |
|
df-pss |
⊢ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 12 |
11
|
baib |
⊢ ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 14 |
8 13
|
bitr4d |
⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ) ) |