| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssnlm.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | lssnlm.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | nlmngp | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  NrmGrp ) | 
						
							| 4 |  | nlmlmod | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  LMod ) | 
						
							| 5 | 2 | lsssubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 7 | 1 | subgngp | ⊢ ( ( 𝑊  ∈  NrmGrp  ∧  𝑈  ∈  ( SubGrp ‘ 𝑊 ) )  →  𝑋  ∈  NrmGrp ) | 
						
							| 8 | 3 6 7 | syl2an2r | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmGrp ) | 
						
							| 9 | 1 2 | lsslmod | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  LMod ) | 
						
							| 10 | 4 9 | sylan | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  LMod ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 12 | 1 11 | resssca | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 14 | 11 | nlmnrg | ⊢ ( 𝑊  ∈  NrmMod  →  ( Scalar ‘ 𝑊 )  ∈  NrmRing ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  ∈  NrmRing ) | 
						
							| 16 | 13 15 | eqeltrrd | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  ∈  NrmRing ) | 
						
							| 17 | 8 10 16 | 3jca | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  ( 𝑋  ∈  NrmGrp  ∧  𝑋  ∈  LMod  ∧  ( Scalar ‘ 𝑋 )  ∈  NrmRing ) ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑊  ∈  NrmMod ) | 
						
							| 19 |  | simprl | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 20 | 13 | adantr | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | 
						
							| 22 | 19 21 | eleqtrrd | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 23 | 6 | adantr | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑈  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 25 | 24 | subgss | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  →  𝑈  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑈  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 27 |  | simprr | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑋 ) ) | 
						
							| 28 | 1 | subgbas | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  →  𝑈  =  ( Base ‘ 𝑋 ) ) | 
						
							| 29 | 23 28 | syl | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑈  =  ( Base ‘ 𝑋 ) ) | 
						
							| 30 | 27 29 | eleqtrrd | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑦  ∈  𝑈 ) | 
						
							| 31 | 26 30 | sseldd | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 32 |  | eqid | ⊢ ( norm ‘ 𝑊 )  =  ( norm ‘ 𝑊 ) | 
						
							| 33 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 35 |  | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑊 ) )  =  ( norm ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 36 | 24 32 33 11 34 35 | nmvs | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) | 
						
							| 37 | 18 22 31 36 | syl3anc | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑈  ∈  𝑆 ) | 
						
							| 39 | 1 33 | ressvsca | ⊢ ( 𝑈  ∈  𝑆  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑋 ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑋 ) ) | 
						
							| 41 | 40 | oveqd | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑋 ) 𝑦 ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑋 ) 𝑦 ) ) ) | 
						
							| 43 | 4 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 44 | 11 33 34 2 | lssvscl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑈 ) | 
						
							| 45 | 43 38 22 30 44 | syl22anc | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑈 ) | 
						
							| 46 |  | eqid | ⊢ ( norm ‘ 𝑋 )  =  ( norm ‘ 𝑋 ) | 
						
							| 47 | 1 32 46 | subgnm2 | ⊢ ( ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  ∧  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑈 )  →  ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 48 | 6 45 47 | syl2an2r | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 49 | 42 48 | eqtr3d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑋 ) 𝑦 ) )  =  ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 50 | 20 | eqcomd | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( norm ‘ ( Scalar ‘ 𝑋 ) )  =  ( norm ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 52 | 51 | fveq1d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 )  =  ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) ) | 
						
							| 53 | 1 32 46 | subgnm2 | ⊢ ( ( 𝑈  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑦  ∈  𝑈 )  →  ( ( norm ‘ 𝑋 ) ‘ 𝑦 )  =  ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) | 
						
							| 54 | 6 30 53 | syl2an2r | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ 𝑋 ) ‘ 𝑦 )  =  ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) | 
						
							| 55 | 52 54 | oveq12d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) | 
						
							| 56 | 37 49 55 | 3eqtr4d | ⊢ ( ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑋 ) ) )  →  ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑋 ) 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) | 
						
							| 57 | 56 | ralrimivva | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∀ 𝑦  ∈  ( Base ‘ 𝑋 ) ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑋 ) 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) | 
						
							| 59 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑋 )  =  (  ·𝑠  ‘ 𝑋 ) | 
						
							| 60 |  | eqid | ⊢ ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) )  =  ( Base ‘ ( Scalar ‘ 𝑋 ) ) | 
						
							| 62 |  | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑋 ) )  =  ( norm ‘ ( Scalar ‘ 𝑋 ) ) | 
						
							| 63 | 58 46 59 60 61 62 | isnlm | ⊢ ( 𝑋  ∈  NrmMod  ↔  ( ( 𝑋  ∈  NrmGrp  ∧  𝑋  ∈  LMod  ∧  ( Scalar ‘ 𝑋 )  ∈  NrmRing )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∀ 𝑦  ∈  ( Base ‘ 𝑋 ) ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑋 ) 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) ) | 
						
							| 64 | 17 57 63 | sylanbrc | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmMod ) |