Metamath Proof Explorer


Theorem lssnvc

Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses lssnlm.x 𝑋 = ( 𝑊s 𝑈 )
lssnlm.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lssnvc ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmVec )

Proof

Step Hyp Ref Expression
1 lssnlm.x 𝑋 = ( 𝑊s 𝑈 )
2 lssnlm.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 nvcnlm ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod )
4 1 2 lssnlm ( ( 𝑊 ∈ NrmMod ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmMod )
5 3 4 sylan ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmMod )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 1 6 resssca ( 𝑈𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
8 7 adantl ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
9 nvclvec ( 𝑊 ∈ NrmVec → 𝑊 ∈ LVec )
10 6 lvecdrng ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing )
11 9 10 syl ( 𝑊 ∈ NrmVec → ( Scalar ‘ 𝑊 ) ∈ DivRing )
12 11 adantr ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing )
13 8 12 eqeltrrd ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ DivRing )
14 eqid ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 )
15 14 isnvc2 ( 𝑋 ∈ NrmVec ↔ ( 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) ∈ DivRing ) )
16 5 13 15 sylanbrc ( ( 𝑊 ∈ NrmVec ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmVec )