| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssnlm.x | ⊢ 𝑋  =  ( 𝑊  ↾s  𝑈 ) | 
						
							| 2 |  | lssnlm.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | nvcnlm | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  NrmMod ) | 
						
							| 4 | 1 2 | lssnlm | ⊢ ( ( 𝑊  ∈  NrmMod  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmMod ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmMod ) | 
						
							| 6 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 7 | 1 6 | resssca | ⊢ ( 𝑈  ∈  𝑆  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑋 ) ) | 
						
							| 9 |  | nvclvec | ⊢ ( 𝑊  ∈  NrmVec  →  𝑊  ∈  LVec ) | 
						
							| 10 | 6 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑊  ∈  NrmVec  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 13 | 8 12 | eqeltrrd | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  ( Scalar ‘ 𝑋 )  ∈  DivRing ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ 𝑋 )  =  ( Scalar ‘ 𝑋 ) | 
						
							| 15 | 14 | isnvc2 | ⊢ ( 𝑋  ∈  NrmVec  ↔  ( 𝑋  ∈  NrmMod  ∧  ( Scalar ‘ 𝑋 )  ∈  DivRing ) ) | 
						
							| 16 | 5 13 15 | sylanbrc | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑈  ∈  𝑆 )  →  𝑋  ∈  NrmVec ) |