| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsspropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
lsspropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
lsspropd.w |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) |
| 4 |
|
lsspropd.p |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 5 |
|
lsspropd.s1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 6 |
|
lsspropd.s2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
| 7 |
|
lsspropd.p1 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
| 8 |
|
lsspropd.p2 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝜑 ) |
| 10 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑧 ∈ 𝑃 ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑠 ⊆ 𝐵 ) |
| 12 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑎 ∈ 𝑠 ) |
| 13 |
11 12
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 14 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
| 16 |
|
ovrspc2v |
⊢ ( ( ( 𝑧 ∈ 𝑃 ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ∈ 𝑊 ) |
| 17 |
10 13 15 16
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ∈ 𝑊 ) |
| 18 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝐵 ⊆ 𝑊 ) |
| 19 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑏 ∈ 𝑠 ) |
| 20 |
11 19
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑏 ∈ 𝐵 ) |
| 21 |
18 20
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → 𝑏 ∈ 𝑊 ) |
| 22 |
4
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 23 |
9 17 21 22
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 24 |
6
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ) |
| 25 |
9 10 13 24
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 27 |
23 26
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) = ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ) |
| 28 |
27
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ ( 𝑧 ∈ 𝑃 ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) ) → ( ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 29 |
28
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ 𝑠 ) ) → ( ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 30 |
29
|
2ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝑃 ) → ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 31 |
30
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 32 |
31
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → ( ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 33 |
32
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) ) |
| 34 |
|
3anass |
⊢ ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 35 |
|
3anass |
⊢ ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 36 |
33 34 35
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 37 |
1
|
sseq2d |
⊢ ( 𝜑 → ( 𝑠 ⊆ 𝐵 ↔ 𝑠 ⊆ ( Base ‘ 𝐾 ) ) ) |
| 38 |
7
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) |
| 39 |
37 38
|
3anbi13d |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 40 |
2
|
sseq2d |
⊢ ( 𝜑 → ( 𝑠 ⊆ 𝐵 ↔ 𝑠 ⊆ ( Base ‘ 𝐿 ) ) ) |
| 41 |
8
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 42 |
40 41
|
3anbi13d |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ 𝐵 ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 43 |
36 39 42
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) ) |
| 44 |
|
eqid |
⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) |
| 45 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 47 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 48 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) |
| 49 |
|
eqid |
⊢ ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐾 ) |
| 50 |
44 45 46 47 48 49
|
islss |
⊢ ( 𝑠 ∈ ( LSubSp ‘ 𝐾 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐾 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐾 ) 𝑎 ) ( +g ‘ 𝐾 ) 𝑏 ) ∈ 𝑠 ) ) |
| 51 |
|
eqid |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) |
| 52 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) |
| 53 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 54 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
| 55 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) |
| 56 |
|
eqid |
⊢ ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 ) |
| 57 |
51 52 53 54 55 56
|
islss |
⊢ ( 𝑠 ∈ ( LSubSp ‘ 𝐿 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ 𝑠 ≠ ∅ ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝐿 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑧 ( ·𝑠 ‘ 𝐿 ) 𝑎 ) ( +g ‘ 𝐿 ) 𝑏 ) ∈ 𝑠 ) ) |
| 58 |
43 50 57
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑠 ∈ ( LSubSp ‘ 𝐾 ) ↔ 𝑠 ∈ ( LSubSp ‘ 𝐿 ) ) ) |
| 59 |
58
|
eqrdv |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐿 ) ) |