Step |
Hyp |
Ref |
Expression |
1 |
|
lssset.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lssset.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
lssset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
lssset.p |
⊢ + = ( +g ‘ 𝑊 ) |
5 |
|
lssset.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lssset.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
7 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
10 |
9
|
pweqd |
⊢ ( 𝑤 = 𝑊 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝑉 ) |
11 |
10
|
difeq1d |
⊢ ( 𝑤 = 𝑊 → ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
13 |
12 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
14 |
13
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐹 ) ) |
15 |
14 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐵 ) |
16 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
17 |
16 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
18 |
17
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) = ( 𝑥 · 𝑎 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) = ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = ( +g ‘ 𝑊 ) ) |
21 |
20 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( +g ‘ 𝑤 ) = + ) |
22 |
21
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) = ( ( 𝑥 · 𝑎 ) + 𝑏 ) ) |
23 |
19 22
|
eqtrd |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) = ( ( 𝑥 · 𝑎 ) + 𝑏 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 ↔ ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ) ) |
25 |
24
|
2ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ) ) |
26 |
15 25
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 ) ) |
27 |
11 26
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
28 |
|
df-lss |
⊢ LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) |
29 |
3
|
fvexi |
⊢ 𝑉 ∈ V |
30 |
29
|
pwex |
⊢ 𝒫 𝑉 ∈ V |
31 |
30
|
difexi |
⊢ ( 𝒫 𝑉 ∖ { ∅ } ) ∈ V |
32 |
31
|
rabex |
⊢ { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ∈ V |
33 |
27 28 32
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( LSubSp ‘ 𝑊 ) = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
34 |
7 33
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → ( LSubSp ‘ 𝑊 ) = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |
35 |
6 34
|
eqtrid |
⊢ ( 𝑊 ∈ 𝑋 → 𝑆 = { 𝑠 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑠 } ) |