Metamath Proof Explorer


Theorem lsssra

Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lsssra.w 𝑊 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 )
lsssra.a 𝐴 = ( Base ‘ 𝑅 )
lsssra.s 𝑆 = ( 𝑅s 𝐵 )
lsssra.b ( 𝜑𝐵 ∈ ( SubRing ‘ 𝑅 ) )
lsssra.c ( 𝜑𝐶 ∈ ( SubRing ‘ 𝑆 ) )
Assertion lsssra ( 𝜑𝐵 ∈ ( LSubSp ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lsssra.w 𝑊 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 )
2 lsssra.a 𝐴 = ( Base ‘ 𝑅 )
3 lsssra.s 𝑆 = ( 𝑅s 𝐵 )
4 lsssra.b ( 𝜑𝐵 ∈ ( SubRing ‘ 𝑅 ) )
5 lsssra.c ( 𝜑𝐶 ∈ ( SubRing ‘ 𝑆 ) )
6 3 subsubrg ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐶 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶𝐵 ) ) )
7 6 biimpa ( ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶𝐵 ) )
8 4 5 7 syl2anc ( 𝜑 → ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶𝐵 ) )
9 8 simpld ( 𝜑𝐶 ∈ ( SubRing ‘ 𝑅 ) )
10 1 sralmod ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝑊 ∈ LMod )
11 9 10 syl ( 𝜑𝑊 ∈ LMod )
12 2 subrgss ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → 𝐵𝐴 )
13 4 12 syl ( 𝜑𝐵𝐴 )
14 1 a1i ( 𝜑𝑊 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) )
15 8 simprd ( 𝜑𝐶𝐵 )
16 15 13 sstrd ( 𝜑𝐶𝐴 )
17 16 2 sseqtrdi ( 𝜑𝐶 ⊆ ( Base ‘ 𝑅 ) )
18 14 17 srabase ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑊 ) )
19 2 18 eqtrid ( 𝜑𝐴 = ( Base ‘ 𝑊 ) )
20 13 19 sseqtrd ( 𝜑𝐵 ⊆ ( Base ‘ 𝑊 ) )
21 4 elfvexd ( 𝜑𝑅 ∈ V )
22 2 3 13 15 21 resssra ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) )
23 1 oveq1i ( 𝑊s 𝐵 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 )
24 22 23 eqtr4di ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( 𝑊s 𝐵 ) )
25 eqid ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 )
26 25 sralmod ( 𝐶 ∈ ( SubRing ‘ 𝑆 ) → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) ∈ LMod )
27 5 26 syl ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) ∈ LMod )
28 24 27 eqeltrrd ( 𝜑 → ( 𝑊s 𝐵 ) ∈ LMod )
29 eqid ( 𝑊s 𝐵 ) = ( 𝑊s 𝐵 )
30 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
31 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
32 29 30 31 islss3 ( 𝑊 ∈ LMod → ( 𝐵 ∈ ( LSubSp ‘ 𝑊 ) ↔ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊s 𝐵 ) ∈ LMod ) ) )
33 32 biimpar ( ( 𝑊 ∈ LMod ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊s 𝐵 ) ∈ LMod ) ) → 𝐵 ∈ ( LSubSp ‘ 𝑊 ) )
34 11 20 28 33 syl12anc ( 𝜑𝐵 ∈ ( LSubSp ‘ 𝑊 ) )