Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lssss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lssss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | 3 4 1 5 6 2 | islss | ⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) | 
| 8 | 7 | simp1bi | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |