Metamath Proof Explorer


Theorem lssss

Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssss.v 𝑉 = ( Base ‘ 𝑊 )
lssss.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lssss ( 𝑈𝑆𝑈𝑉 )

Proof

Step Hyp Ref Expression
1 lssss.v 𝑉 = ( Base ‘ 𝑊 )
2 lssss.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
4 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
5 eqid ( +g𝑊 ) = ( +g𝑊 )
6 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
7 3 4 1 5 6 2 islss ( 𝑈𝑆 ↔ ( 𝑈𝑉𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑈 ) )
8 7 simp1bi ( 𝑈𝑆𝑈𝑉 )