Metamath Proof Explorer


Theorem lsssssubg

Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsssubg.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lsssssubg ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lsssubg.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 1 lsssubg ( ( 𝑊 ∈ LMod ∧ 𝑥𝑆 ) → 𝑥 ∈ ( SubGrp ‘ 𝑊 ) )
3 2 ex ( 𝑊 ∈ LMod → ( 𝑥𝑆𝑥 ∈ ( SubGrp ‘ 𝑊 ) ) )
4 3 ssrdv ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) )