Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lssss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lssuni.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| Assertion | lssuni | ⊢ ( 𝜑 → ∪ 𝑆 = 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lssss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lssuni.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | rabid2 | ⊢ ( 𝑆 = { 𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉 } ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉 ) | |
| 5 | 1 2 | lssss | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝑉 ) |
| 6 | 4 5 | mprgbir | ⊢ 𝑆 = { 𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉 } |
| 7 | 6 | unieqi | ⊢ ∪ 𝑆 = ∪ { 𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉 } |
| 8 | 1 2 | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |
| 9 | unimax | ⊢ ( 𝑉 ∈ 𝑆 → ∪ { 𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉 } = 𝑉 ) | |
| 10 | 3 8 9 | 3syl | ⊢ ( 𝜑 → ∪ { 𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉 } = 𝑉 ) |
| 11 | 7 10 | eqtrid | ⊢ ( 𝜑 → ∪ 𝑆 = 𝑉 ) |