| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssvacl.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 2 |
|
lssvacl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
4 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 6 |
5
|
ad2ant2lr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 10 |
4 7 8 9
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 11 |
3 6 10
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 12 |
11
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 15 |
7 14 9
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ 𝑈 ) |
| 18 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ 𝑈 ) |
| 19 |
7 14 1 8 2
|
lsscl |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |
| 20 |
13 16 17 18 19
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) + 𝑌 ) ∈ 𝑈 ) |
| 21 |
12 20
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |