Metamath Proof Explorer


Theorem lssvancl1

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 . Can it be used along with lspsnne1 , lspsnne2 to shorten this proof? (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses lssvancl.v 𝑉 = ( Base ‘ 𝑊 )
lssvancl.p + = ( +g𝑊 )
lssvancl.s 𝑆 = ( LSubSp ‘ 𝑊 )
lssvancl.w ( 𝜑𝑊 ∈ LMod )
lssvancl.u ( 𝜑𝑈𝑆 )
lssvancl.x ( 𝜑𝑋𝑈 )
lssvancl.y ( 𝜑𝑌𝑉 )
lssvancl.n ( 𝜑 → ¬ 𝑌𝑈 )
Assertion lssvancl1 ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 lssvancl.v 𝑉 = ( Base ‘ 𝑊 )
2 lssvancl.p + = ( +g𝑊 )
3 lssvancl.s 𝑆 = ( LSubSp ‘ 𝑊 )
4 lssvancl.w ( 𝜑𝑊 ∈ LMod )
5 lssvancl.u ( 𝜑𝑈𝑆 )
6 lssvancl.x ( 𝜑𝑋𝑈 )
7 lssvancl.y ( 𝜑𝑌𝑉 )
8 lssvancl.n ( 𝜑 → ¬ 𝑌𝑈 )
9 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
10 4 9 syl ( 𝜑𝑊 ∈ Abel )
11 1 3 lssel ( ( 𝑈𝑆𝑋𝑈 ) → 𝑋𝑉 )
12 5 6 11 syl2anc ( 𝜑𝑋𝑉 )
13 eqid ( -g𝑊 ) = ( -g𝑊 )
14 1 2 13 ablpncan2 ( ( 𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉 ) → ( ( 𝑋 + 𝑌 ) ( -g𝑊 ) 𝑋 ) = 𝑌 )
15 10 12 7 14 syl3anc ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g𝑊 ) 𝑋 ) = 𝑌 )
16 15 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) ( -g𝑊 ) 𝑋 ) = 𝑌 )
17 4 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑊 ∈ LMod )
18 5 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑈𝑆 )
19 simpr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 )
20 6 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑋𝑈 )
21 13 3 lssvsubcl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝑈𝑋𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( -g𝑊 ) 𝑋 ) ∈ 𝑈 )
22 17 18 19 20 21 syl22anc ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) ( -g𝑊 ) 𝑋 ) ∈ 𝑈 )
23 16 22 eqeltrrd ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑌𝑈 )
24 8 23 mtand ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 )