| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssvancl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lssvancl.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lssvancl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 |  | lssvancl.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lssvancl.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 6 |  | lssvancl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑈 ) | 
						
							| 7 |  | lssvancl.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 8 |  | lssvancl.n | ⊢ ( 𝜑  →  ¬  𝑌  ∈  𝑈 ) | 
						
							| 9 |  | lmodabl | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Abel ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Abel ) | 
						
							| 11 | 1 3 | lssel | ⊢ ( ( 𝑈  ∈  𝑆  ∧  𝑋  ∈  𝑈 )  →  𝑋  ∈  𝑉 ) | 
						
							| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 13 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 14 | 1 2 13 | ablpncan2 | ⊢ ( ( 𝑊  ∈  Abel  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) 𝑋 )  =  𝑌 ) | 
						
							| 15 | 10 12 7 14 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) 𝑋 )  =  𝑌 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) 𝑋 )  =  𝑌 ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  𝑊  ∈  LMod ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  𝑈  ∈  𝑆 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  ( 𝑋  +  𝑌 )  ∈  𝑈 ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  𝑋  ∈  𝑈 ) | 
						
							| 21 | 13 3 | lssvsubcl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  ∧  ( ( 𝑋  +  𝑌 )  ∈  𝑈  ∧  𝑋  ∈  𝑈 ) )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) 𝑋 )  ∈  𝑈 ) | 
						
							| 22 | 17 18 19 20 21 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝑊 ) 𝑋 )  ∈  𝑈 ) | 
						
							| 23 | 16 22 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑈 )  →  𝑌  ∈  𝑈 ) | 
						
							| 24 | 8 23 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝑋  +  𝑌 )  ∈  𝑈 ) |