| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssvancl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lssvancl.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lssvancl.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 |  | lssvancl.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lssvancl.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 6 |  | lssvancl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑈 ) | 
						
							| 7 |  | lssvancl.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 8 |  | lssvancl.n | ⊢ ( 𝜑  →  ¬  𝑌  ∈  𝑈 ) | 
						
							| 9 | 1 3 | lssel | ⊢ ( ( 𝑈  ∈  𝑆  ∧  𝑋  ∈  𝑈 )  →  𝑋  ∈  𝑉 ) | 
						
							| 10 | 5 6 9 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 11 | 1 2 | lmodcom | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) | 
						
							| 12 | 4 10 7 11 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 | lssvancl1 | ⊢ ( 𝜑  →  ¬  ( 𝑋  +  𝑌 )  ∈  𝑈 ) | 
						
							| 14 | 12 13 | eqneltrrd | ⊢ ( 𝜑  →  ¬  ( 𝑌  +  𝑋 )  ∈  𝑈 ) |