Step |
Hyp |
Ref |
Expression |
1 |
|
lssvnegcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lssvnegcl.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
3 1
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
3 2 5 6 7 8
|
lmodvneg1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
10 |
4 9
|
sylan2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
11 |
10
|
3impb |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
12 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
13 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
14 |
5
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
16 |
|
ringgrp |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
18 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
19 |
18 7
|
ringidcl |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
15 19
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
21 |
18 8
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
22 |
17 20 21
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
23 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
24 |
5 6 18 1
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑈 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
25 |
12 13 22 23 24
|
syl22anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
26 |
11 25
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ) |