| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssvs0or.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lssvs0or.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | lssvs0or.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lssvs0or.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lssvs0or.o | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 6 |  | lssvs0or.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 7 |  | lssvs0or.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 8 |  | lssvs0or.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 9 |  | lssvs0or.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | lssvs0or.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 11 | 3 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝐹  ∈  DivRing ) | 
						
							| 12 | 7 11 | syl | ⊢ ( 𝜑  →  𝐹  ∈  DivRing ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝐹  ∈  DivRing ) | 
						
							| 14 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝐴  ∈  𝐾 ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝐴  ≠   0  ) | 
						
							| 16 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 18 |  | eqid | ⊢ ( invr ‘ 𝐹 )  =  ( invr ‘ 𝐹 ) | 
						
							| 19 | 4 5 16 17 18 | drnginvrl | ⊢ ( ( 𝐹  ∈  DivRing  ∧  𝐴  ∈  𝐾  ∧  𝐴  ≠   0  )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  =  ( 1r ‘ 𝐹 ) ) | 
						
							| 20 | 13 14 15 19 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  =  ( 1r ‘ 𝐹 ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑋 )  =  ( ( 1r ‘ 𝐹 )  ·  𝑋 ) ) | 
						
							| 22 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 23 | 7 22 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝑊  ∈  LMod ) | 
						
							| 25 | 4 5 18 | drnginvrcl | ⊢ ( ( 𝐹  ∈  DivRing  ∧  𝐴  ∈  𝐾  ∧  𝐴  ≠   0  )  →  ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 26 | 13 14 15 25 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 27 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝑋  ∈  𝑉 ) | 
						
							| 28 | 1 3 2 4 16 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾  ∧  𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑋 )  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 29 | 24 26 14 27 28 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑋 )  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 30 | 1 3 2 17 | lmodvs1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 31 | 24 27 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 32 | 21 29 31 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝑋  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 33 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝑈  ∈  𝑆 ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( 𝐴  ·  𝑋 )  ∈  𝑈 ) | 
						
							| 35 | 3 2 4 6 | lssvscl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  ∧  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 ) )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) )  ∈  𝑈 ) | 
						
							| 36 | 24 33 26 34 35 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) )  ∈  𝑈 ) | 
						
							| 37 | 32 36 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  ∧  𝐴  ≠   0  )  →  𝑋  ∈  𝑈 ) | 
						
							| 38 | 37 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  →  ( 𝐴  ≠   0   →  𝑋  ∈  𝑈 ) ) | 
						
							| 39 | 38 | necon1bd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  →  ( ¬  𝑋  ∈  𝑈  →  𝐴  =   0  ) ) | 
						
							| 40 | 39 | orrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  →  ( 𝑋  ∈  𝑈  ∨  𝐴  =   0  ) ) | 
						
							| 41 | 40 | orcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑈 )  →  ( 𝐴  =   0   ∨  𝑋  ∈  𝑈 ) ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝐴  =   0   →  ( 𝐴  ·  𝑋 )  =  (  0   ·  𝑋 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =   0  )  →  ( 𝐴  ·  𝑋 )  =  (  0   ·  𝑋 ) ) | 
						
							| 44 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 45 | 1 3 2 5 44 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  (  0   ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 46 | 23 9 45 | syl2anc | ⊢ ( 𝜑  →  (  0   ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 47 | 44 6 | lss0cl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  ( 0g ‘ 𝑊 )  ∈  𝑈 ) | 
						
							| 48 | 23 8 47 | syl2anc | ⊢ ( 𝜑  →  ( 0g ‘ 𝑊 )  ∈  𝑈 ) | 
						
							| 49 | 46 48 | eqeltrd | ⊢ ( 𝜑  →  (  0   ·  𝑋 )  ∈  𝑈 ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =   0  )  →  (  0   ·  𝑋 )  ∈  𝑈 ) | 
						
							| 51 | 43 50 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  =   0  )  →  ( 𝐴  ·  𝑋 )  ∈  𝑈 ) | 
						
							| 52 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑊  ∈  LMod ) | 
						
							| 53 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑈  ∈  𝑆 ) | 
						
							| 54 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝐴  ∈  𝐾 ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑋  ∈  𝑈 ) | 
						
							| 56 | 3 2 4 6 | lssvscl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑈 ) )  →  ( 𝐴  ·  𝑋 )  ∈  𝑈 ) | 
						
							| 57 | 52 53 54 55 56 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  ( 𝐴  ·  𝑋 )  ∈  𝑈 ) | 
						
							| 58 | 51 57 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝐴  =   0   ∨  𝑋  ∈  𝑈 ) )  →  ( 𝐴  ·  𝑋 )  ∈  𝑈 ) | 
						
							| 59 | 41 58 | impbida | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  ∈  𝑈  ↔  ( 𝐴  =   0   ∨  𝑋  ∈  𝑈 ) ) ) |