Step |
Hyp |
Ref |
Expression |
1 |
|
lssvs0or.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lssvs0or.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
lssvs0or.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lssvs0or.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lssvs0or.o |
⊢ 0 = ( 0g ‘ 𝐹 ) |
6 |
|
lssvs0or.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
7 |
|
lssvs0or.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
lssvs0or.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
9 |
|
lssvs0or.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lssvs0or.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
11 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝐹 ∈ DivRing ) |
14 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ 𝐾 ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
17 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
18 |
|
eqid |
⊢ ( invr ‘ 𝐹 ) = ( invr ‘ 𝐹 ) |
19 |
4 5 16 17 18
|
drnginvrl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
20 |
13 14 15 19
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
22 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑊 ∈ LMod ) |
25 |
4 5 18
|
drnginvrcl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
26 |
13 14 15 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
27 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
28 |
1 3 2 4 16
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
29 |
24 26 14 27 28
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
30 |
1 3 2 17
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
31 |
24 27 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
32 |
21 29 31
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑋 = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
33 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑈 ∈ 𝑆 ) |
34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
35 |
3 2 4 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ∈ 𝑈 ) |
36 |
24 33 26 34 35
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ∈ 𝑈 ) |
37 |
32 36
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑋 ∈ 𝑈 ) |
38 |
37
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( 𝐴 ≠ 0 → 𝑋 ∈ 𝑈 ) ) |
39 |
38
|
necon1bd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( ¬ 𝑋 ∈ 𝑈 → 𝐴 = 0 ) ) |
40 |
39
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( 𝑋 ∈ 𝑈 ∨ 𝐴 = 0 ) ) |
41 |
40
|
orcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( 𝐴 = 0 ∨ 𝑋 ∈ 𝑈 ) ) |
42 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝑋 ) = ( 0 · 𝑋 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝑋 ) = ( 0 · 𝑋 ) ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
45 |
1 3 2 5 44
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
46 |
23 9 45
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
47 |
44 6
|
lss0cl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
48 |
23 8 47
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
49 |
46 48
|
eqeltrd |
⊢ ( 𝜑 → ( 0 · 𝑋 ) ∈ 𝑈 ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 0 · 𝑋 ) ∈ 𝑈 ) |
51 |
43 50
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
52 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
53 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
54 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝐴 ∈ 𝐾 ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
56 |
3 2 4 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑈 ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
57 |
52 53 54 55 56
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
58 |
51 57
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐴 = 0 ∨ 𝑋 ∈ 𝑈 ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
59 |
41 58
|
impbida |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ∈ 𝑈 ↔ ( 𝐴 = 0 ∨ 𝑋 ∈ 𝑈 ) ) ) |