| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssvscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lssvscl.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lssvscl.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
lssvscl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 6 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 8 |
7 4
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
| 9 |
8
|
ad2ant2l |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
| 10 |
7 1 2 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
| 11 |
5 6 9 10
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 14 |
7 12 13
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 𝑋 · 𝑌 ) ) |
| 15 |
5 11 14
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 𝑋 · 𝑌 ) ) |
| 16 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 17 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ 𝑈 ) |
| 18 |
13 4
|
lss0cl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 20 |
1 3 12 2 4
|
lsscl |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ∈ 𝑈 ) |
| 21 |
16 6 17 19 20
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ∈ 𝑈 ) |
| 22 |
15 21
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |