Step |
Hyp |
Ref |
Expression |
1 |
|
lssvsubcl.m |
⊢ − = ( -g ‘ 𝑊 ) |
2 |
|
lssvsubcl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
5 |
4 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
6 |
5
|
ad2ant2lr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
7 |
4 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
8 |
7
|
ad2ant2l |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
14 |
4 9 1 10 11 12 13
|
lmodvsubval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
15 |
3 6 8 14
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
16 |
10
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
17 |
3 16
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
18 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
19 |
10 18 13
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
3 19
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
21 |
18 12
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
22 |
17 20 21
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
23 |
4 10 11 18
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
24 |
3 22 8 23
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
25 |
4 9
|
lmodcom |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ) |
26 |
3 6 24 25
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ) |
27 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
28 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ 𝑈 ) |
29 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ 𝑈 ) |
30 |
10 18 9 11 2
|
lsscl |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈 ) ) → ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
31 |
27 22 28 29 30
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
32 |
26 31
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ 𝑈 ) |
33 |
15 32
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝑈 ) |