Metamath Proof Explorer


Theorem lssvsubcl

Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvsubcl.m = ( -g𝑊 )
lssvsubcl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion lssvsubcl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( 𝑋 𝑌 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 lssvsubcl.m = ( -g𝑊 )
2 lssvsubcl.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 simpll ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → 𝑊 ∈ LMod )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 4 2 lssel ( ( 𝑈𝑆𝑋𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) )
6 5 ad2ant2lr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → 𝑋 ∈ ( Base ‘ 𝑊 ) )
7 4 2 lssel ( ( 𝑈𝑆𝑌𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) )
8 7 ad2ant2l ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → 𝑌 ∈ ( Base ‘ 𝑊 ) )
9 eqid ( +g𝑊 ) = ( +g𝑊 )
10 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
11 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
12 eqid ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) )
13 eqid ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
14 4 9 1 10 11 12 13 lmodvsubval2 ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ) )
15 3 6 8 14 syl3anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ) )
16 10 lmodfgrp ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp )
17 3 16 syl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( Scalar ‘ 𝑊 ) ∈ Grp )
18 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
19 10 18 13 lmod1cl ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
20 3 19 syl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
21 18 12 grpinvcl ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
22 17 20 21 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
23 4 10 11 18 lmodvscl ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
24 3 22 8 23 syl3anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
25 4 9 lmodcom ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 ( +g𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ) = ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ( +g𝑊 ) 𝑋 ) )
26 3 6 24 25 syl3anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( 𝑋 ( +g𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ) = ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ( +g𝑊 ) 𝑋 ) )
27 simplr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → 𝑈𝑆 )
28 simprr ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → 𝑌𝑈 )
29 simprl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → 𝑋𝑈 )
30 10 18 9 11 2 lsscl ( ( 𝑈𝑆 ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌𝑈𝑋𝑈 ) ) → ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ( +g𝑊 ) 𝑋 ) ∈ 𝑈 )
31 27 22 28 29 30 syl13anc ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ( +g𝑊 ) 𝑋 ) ∈ 𝑈 )
32 26 31 eqeltrd ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( 𝑋 ( +g𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠𝑊 ) 𝑌 ) ) ∈ 𝑈 )
33 15 32 eqeltrd ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋𝑈𝑌𝑈 ) ) → ( 𝑋 𝑌 ) ∈ 𝑈 )