Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
2 |
|
fvex |
⊢ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∈ V |
3 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
6 |
3 5
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
7 |
|
df-lsw |
⊢ lastS = ( 𝑤 ∈ V ↦ ( 𝑤 ‘ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) |
8 |
6 7
|
fvmptg |
⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∈ V ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
9 |
1 2 8
|
sylancl |
⊢ ( 𝑊 ∈ 𝑋 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |