Step |
Hyp |
Ref |
Expression |
1 |
|
lsw |
⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
3 |
|
fvoveq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 0 − 1 ) ) ) |
4 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
5 |
|
1nn |
⊢ 1 ∈ ℕ |
6 |
|
nnnle0 |
⊢ ( 1 ∈ ℕ → ¬ 1 ≤ 0 ) |
7 |
5 6
|
ax-mp |
⊢ ¬ 1 ≤ 0 |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
8 9
|
subge0i |
⊢ ( 0 ≤ ( 0 − 1 ) ↔ 1 ≤ 0 ) |
11 |
7 10
|
mtbir |
⊢ ¬ 0 ≤ ( 0 − 1 ) |
12 |
|
elfzole1 |
⊢ ( ( 0 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 0 ≤ ( 0 − 1 ) ) |
13 |
11 12
|
mto |
⊢ ¬ ( 0 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
14 |
|
eleq2 |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 0 − 1 ) ∈ dom 𝑊 ↔ ( 0 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
15 |
13 14
|
mtbiri |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ¬ ( 0 − 1 ) ∈ dom 𝑊 ) |
16 |
|
ndmfv |
⊢ ( ¬ ( 0 − 1 ) ∈ dom 𝑊 → ( 𝑊 ‘ ( 0 − 1 ) ) = ∅ ) |
17 |
4 15 16
|
3syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ‘ ( 0 − 1 ) ) = ∅ ) |
18 |
3 17
|
sylan9eqr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ∅ ) |
19 |
2 18
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( lastS ‘ 𝑊 ) = ∅ ) |