| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatlen | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  =  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 ) ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  =  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 ) ) | 
						
							| 4 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0zd | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 6 |  | lennncl | ⊢ ( ( 𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 7 |  | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ )  →  ( ♯ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 8 |  | nnz | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ  →  ( ♯ ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 9 |  | zaddcl | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℤ )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℤ ) | 
						
							| 11 |  | zre | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℤ  →  ( ♯ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 12 |  | nnrp | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ  →  ( ♯ ‘ 𝐵 )  ∈  ℝ+ ) | 
						
							| 13 |  | ltaddrp | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ+ )  →  ( ♯ ‘ 𝐴 )  <  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ )  →  ( ♯ ‘ 𝐴 )  <  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 15 | 7 10 14 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝐴 )  <  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 16 | 5 6 15 | syl2an | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  ( 𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ ) )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝐴 )  <  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 17 | 16 | 3impb | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝐴 )  <  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 18 |  | fzolb | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) )  ↔  ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℤ  ∧  ( ♯ ‘ 𝐴 )  <  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ♯ ‘ 𝐴 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 20 |  | fzoend | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) )  →  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 22 | 3 21 | eqeltrd | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 23 |  | ccatval2 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  ∈  ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) )  =  ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 22 23 | syld3an3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( 𝐴  ++  𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) )  =  ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 2 | oveq1d | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 26 | 4 | nn0cnd | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 27 |  | lencl | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 28 | 27 | nn0cnd | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 29 |  | addcl | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 30 |  | 1cnd | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  1  ∈  ℂ ) | 
						
							| 31 |  | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 32 | 29 30 31 | sub32d | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  ( ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  ( ♯ ‘ 𝐴 ) )  −  1 ) ) | 
						
							| 33 |  | pncan2 | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  ( ♯ ‘ 𝐴 ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  ( ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  ( ♯ ‘ 𝐴 ) )  −  1 )  =  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 35 | 32 34 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ )  →  ( ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 36 | 26 28 35 | syl2an | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 37 | 25 36 | eqtrd | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 38 | 37 | 3adant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) )  =  ( ( ♯ ‘ 𝐵 )  −  1 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 )  −  ( ♯ ‘ 𝐴 ) ) )  =  ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 40 | 24 39 | eqtrd | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( ( 𝐴  ++  𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) )  =  ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 41 |  | ovex | ⊢ ( 𝐴  ++  𝐵 )  ∈  V | 
						
							| 42 |  | lsw | ⊢ ( ( 𝐴  ++  𝐵 )  ∈  V  →  ( lastS ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( 𝐴  ++  𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) ) ) | 
						
							| 43 | 41 42 | mp1i | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( lastS ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( 𝐴  ++  𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) ) ) | 
						
							| 44 |  | lsw | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( lastS ‘ 𝐵 )  =  ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( lastS ‘ 𝐵 )  =  ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 )  −  1 ) ) ) | 
						
							| 46 | 40 43 45 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝐵  ≠  ∅ )  →  ( lastS ‘ ( 𝐴  ++  𝐵 ) )  =  ( lastS ‘ 𝐵 ) ) |