Step |
Hyp |
Ref |
Expression |
1 |
|
wrdsymb1 |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
2 |
|
lswccats1 |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( 𝑃 ‘ 0 ) ) |
3 |
1 2
|
syldan |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( 𝑃 ‘ 0 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝑃 ∈ Word 𝑉 ) |
5 |
1
|
s1cld |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ) |
6 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
7 |
|
elnnnn0c |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ) |
8 |
7
|
biimpri |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
9 |
6 8
|
sylan |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
10 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ↔ ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
12 |
|
ccatval1 |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
13 |
4 5 11 12
|
syl3anc |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
14 |
3 13
|
eqtr4d |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ) |