| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdsymb1 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 2 |  | lswccats1 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( 𝑃 ‘ 0 )  ∈  𝑉 )  →  ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 3 | 1 2 | syldan | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝑃  ∈  Word  𝑉 ) | 
						
							| 5 | 1 | s1cld | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  〈“ ( 𝑃 ‘ 0 ) ”〉  ∈  Word  𝑉 ) | 
						
							| 6 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 7 |  | elnnnn0c | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 8 | 7 | biimpri | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 9 | 6 8 | sylan | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 10 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  ↔  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 12 |  | ccatval1 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  〈“ ( 𝑃 ‘ 0 ) ”〉  ∈  Word  𝑉  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) )  →  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 13 | 4 5 11 12 | syl3anc | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 14 | 3 13 | eqtr4d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ) |