Step |
Hyp |
Ref |
Expression |
1 |
|
ffun |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Fun 𝐹 ) |
2 |
1
|
anim1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑊 ∈ Word 𝐴 ) → ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) ) |
5 |
|
cofunexg |
⊢ ( ( Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴 ) → ( 𝐹 ∘ 𝑊 ) ∈ V ) |
6 |
|
lsw |
⊢ ( ( 𝐹 ∘ 𝑊 ) ∈ V → ( lastS ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) ) ) |
7 |
4 5 6
|
3syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( lastS ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) ) ) |
8 |
|
lenco |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
10 |
9
|
fvoveq1d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) − 1 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
11 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
13 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
14 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
16 |
12 15
|
jca |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
18 |
|
fvco3 |
⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
20 |
|
lsw |
⊢ ( 𝑊 ∈ Word 𝐴 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( lastS ‘ 𝑊 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ‘ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( 𝐹 ‘ ( lastS ‘ 𝑊 ) ) ) |
24 |
19 23
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝐹 ‘ ( lastS ‘ 𝑊 ) ) ) |
25 |
7 10 24
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( lastS ‘ ( 𝐹 ∘ 𝑊 ) ) = ( 𝐹 ‘ ( lastS ‘ 𝑊 ) ) ) |