Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( 𝑊 cyclShift 𝑁 ) ∈ V |
2 |
|
lsw |
⊢ ( ( 𝑊 cyclShift 𝑁 ) ∈ V → ( lastS ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) − 1 ) ) ) |
3 |
1 2
|
mp1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) − 1 ) ) ) |
4 |
|
elfzelz |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) |
5 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
7 |
6
|
fvoveq1d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) − 1 ) ) = ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
8 |
|
cshwidxn |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
9 |
3 7 8
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |