| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 2 |
|
eleq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑊 ) → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 3 |
2
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 5 |
|
wrdfin |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin ) |
| 6 |
|
hashnncl |
⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 8 |
7
|
biimpd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → 𝑊 ≠ ∅ ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → 𝑊 ≠ ∅ ) ) |
| 10 |
4 9
|
sylbid |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑁 ∈ ℕ → 𝑊 ≠ ∅ ) ) |
| 11 |
10
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 𝑊 ≠ ∅ ) |
| 12 |
|
lswcl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) |
| 13 |
1 11 12
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) |