Metamath Proof Explorer


Theorem lsws1

Description: The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018)

Ref Expression
Assertion lsws1 ( 𝐴𝑉 → ( lastS ‘ ⟨“ 𝐴 ”⟩ ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 s1cl ( 𝐴𝑉 → ⟨“ 𝐴 ”⟩ ∈ Word 𝑉 )
2 s1len ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1
3 lsw1 ( ( ⟨“ 𝐴 ”⟩ ∈ Word 𝑉 ∧ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1 ) → ( lastS ‘ ⟨“ 𝐴 ”⟩ ) = ( ⟨“ 𝐴 ”⟩ ‘ 0 ) )
4 1 2 3 sylancl ( 𝐴𝑉 → ( lastS ‘ ⟨“ 𝐴 ”⟩ ) = ( ⟨“ 𝐴 ”⟩ ‘ 0 ) )
5 s1fv ( 𝐴𝑉 → ( ⟨“ 𝐴 ”⟩ ‘ 0 ) = 𝐴 )
6 4 5 eqtrd ( 𝐴𝑉 → ( lastS ‘ ⟨“ 𝐴 ”⟩ ) = 𝐴 )