Metamath Proof Explorer


Theorem lsws2

Description: The last symbol of a doubleton word is its second symbol. (Contributed by AV, 8-Feb-2021)

Ref Expression
Assertion lsws2 ( 𝐵𝑉 → ( lastS ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 s2cli ⟨“ 𝐴 𝐵 ”⟩ ∈ Word V
2 lsw ( ⟨“ 𝐴 𝐵 ”⟩ ∈ Word V → ( lastS ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = ( ⟨“ 𝐴 𝐵 ”⟩ ‘ ( ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) − 1 ) ) )
3 1 2 mp1i ( 𝐵𝑉 → ( lastS ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = ( ⟨“ 𝐴 𝐵 ”⟩ ‘ ( ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) − 1 ) ) )
4 s2len ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 2
5 4 oveq1i ( ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) − 1 ) = ( 2 − 1 )
6 2m1e1 ( 2 − 1 ) = 1
7 5 6 eqtri ( ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) − 1 ) = 1
8 7 fveq2i ( ⟨“ 𝐴 𝐵 ”⟩ ‘ ( ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) − 1 ) ) = ( ⟨“ 𝐴 𝐵 ”⟩ ‘ 1 )
9 8 a1i ( 𝐵𝑉 → ( ⟨“ 𝐴 𝐵 ”⟩ ‘ ( ( ♯ ‘ ⟨“ 𝐴 𝐵 ”⟩ ) − 1 ) ) = ( ⟨“ 𝐴 𝐵 ”⟩ ‘ 1 ) )
10 s2fv1 ( 𝐵𝑉 → ( ⟨“ 𝐴 𝐵 ”⟩ ‘ 1 ) = 𝐵 )
11 3 9 10 3eqtrd ( 𝐵𝑉 → ( lastS ‘ ⟨“ 𝐴 𝐵 ”⟩ ) = 𝐵 )