Metamath Proof Explorer
Description: Adding both side of two inequalities. Theorem I.25 of Apostol
p. 20. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
lt2addd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
|
|
lt2addd.5 |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
|
|
lt2addd.6 |
⊢ ( 𝜑 → 𝐵 < 𝐷 ) |
|
Assertion |
lt2addd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
lt2addd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
lt2addd.5 |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
6 |
|
lt2addd.6 |
⊢ ( 𝜑 → 𝐵 < 𝐷 ) |
7 |
2 4 6
|
ltled |
⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) |
8 |
1 2 3 4 5 7
|
ltleaddd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) |