Metamath Proof Explorer


Theorem lt2addi

Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
lt.4 𝐷 ∈ ℝ
Assertion lt2addi ( ( 𝐴 < 𝐶𝐵 < 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 lt2.3 𝐶 ∈ ℝ
4 lt.4 𝐷 ∈ ℝ
5 lt2add ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 < 𝐶𝐵 < 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ) )
6 1 2 3 4 5 mp4an ( ( 𝐴 < 𝐶𝐵 < 𝐷 ) → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) )