Metamath Proof Explorer


Theorem lt2addmuld

Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt2addmuld.a ( 𝜑𝐴 ∈ ℝ )
lt2addmuld.b ( 𝜑𝐵 ∈ ℝ )
lt2addmuld.c ( 𝜑𝐶 ∈ ℝ )
lt2addmuld.altc ( 𝜑𝐴 < 𝐶 )
lt2addmuld.bltc ( 𝜑𝐵 < 𝐶 )
Assertion lt2addmuld ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 2 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 lt2addmuld.a ( 𝜑𝐴 ∈ ℝ )
2 lt2addmuld.b ( 𝜑𝐵 ∈ ℝ )
3 lt2addmuld.c ( 𝜑𝐶 ∈ ℝ )
4 lt2addmuld.altc ( 𝜑𝐴 < 𝐶 )
5 lt2addmuld.bltc ( 𝜑𝐵 < 𝐶 )
6 1 2 3 3 4 5 lt2addd ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐶 ) )
7 3 recnd ( 𝜑𝐶 ∈ ℂ )
8 7 2timesd ( 𝜑 → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) )
9 6 8 breqtrrd ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 2 · 𝐶 ) )