| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lt2addrd.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							lt2addrd.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							lt2addrd.3 | 
							⊢ ( 𝜑  →  𝐶  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							lt2addrd.4 | 
							⊢ ( 𝜑  →  𝐴  <  ( 𝐵  +  𝐶 ) )  | 
						
						
							| 5 | 
							
								2 3
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( 𝐵  +  𝐶 )  ∈  ℝ )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  −  𝐴 )  ∈  ℝ )  | 
						
						
							| 7 | 
							
								6
							 | 
							rehalfcld | 
							⊢ ( 𝜑  →  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  ∈  ℝ )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								3 7
							 | 
							resubcld | 
							⊢ ( 𝜑  →  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  ∈  ℝ )  | 
						
						
							| 10 | 
							
								3
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐶  ∈  ℂ )  | 
						
						
							| 11 | 
							
								2
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℂ )  | 
						
						
							| 12 | 
							
								11 10
							 | 
							addcld | 
							⊢ ( 𝜑  →  ( 𝐵  +  𝐶 )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								1
							 | 
							recnd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℂ )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								14
							 | 
							halfcld | 
							⊢ ( 𝜑  →  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								10 15 15
							 | 
							subsub4d | 
							⊢ ( 𝜑  →  ( ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  =  ( 𝐶  −  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝐵  +  ( ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  =  ( 𝐵  +  ( 𝐶  −  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) ) )  | 
						
						
							| 18 | 
							
								10 15
							 | 
							subcld | 
							⊢ ( 𝜑  →  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								11 15 18
							 | 
							subadd23d | 
							⊢ ( 𝜑  →  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  =  ( 𝐵  +  ( ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) )  | 
						
						
							| 20 | 
							
								14
							 | 
							2halvesd | 
							⊢ ( 𝜑  →  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  =  ( ( 𝐵  +  𝐶 )  −  𝐴 ) )  | 
						
						
							| 21 | 
							
								20 14
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  ∈  ℂ )  | 
						
						
							| 22 | 
							
								11 10 21
							 | 
							addsubassd | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  −  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  =  ( 𝐵  +  ( 𝐶  −  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) ) )  | 
						
						
							| 23 | 
							
								17 19 22
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  =  ( ( 𝐵  +  𝐶 )  −  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) )  | 
						
						
							| 24 | 
							
								20
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  −  ( ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  +  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  =  ( ( 𝐵  +  𝐶 )  −  ( ( 𝐵  +  𝐶 )  −  𝐴 ) ) )  | 
						
						
							| 25 | 
							
								12 13
							 | 
							nncand | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  −  ( ( 𝐵  +  𝐶 )  −  𝐴 ) )  =  𝐴 )  | 
						
						
							| 26 | 
							
								23 24 25
							 | 
							3eqtrrd | 
							⊢ ( 𝜑  →  𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							difrp | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  +  𝐶 )  ∈  ℝ )  →  ( 𝐴  <  ( 𝐵  +  𝐶 )  ↔  ( ( 𝐵  +  𝐶 )  −  𝐴 )  ∈  ℝ+ ) )  | 
						
						
							| 28 | 
							
								1 5 27
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴  <  ( 𝐵  +  𝐶 )  ↔  ( ( 𝐵  +  𝐶 )  −  𝐴 )  ∈  ℝ+ ) )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  −  𝐴 )  ∈  ℝ+ )  | 
						
						
							| 30 | 
							
								29
							 | 
							rphalfcld | 
							⊢ ( 𝜑  →  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 )  ∈  ℝ+ )  | 
						
						
							| 31 | 
							
								2 30
							 | 
							ltsubrpd | 
							⊢ ( 𝜑  →  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐵 )  | 
						
						
							| 32 | 
							
								3 30
							 | 
							ltsubrpd | 
							⊢ ( 𝜑  →  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐶 )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑏  =  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( 𝑏  +  𝑐 )  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  𝑐 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							eqeq2d | 
							⊢ ( 𝑏  =  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( 𝐴  =  ( 𝑏  +  𝑐 )  ↔  𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  𝑐 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑏  =  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( 𝑏  <  𝐵  ↔  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐵 ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							3anbi12d | 
							⊢ ( 𝑏  =  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( ( 𝐴  =  ( 𝑏  +  𝑐 )  ∧  𝑏  <  𝐵  ∧  𝑐  <  𝐶 )  ↔  ( 𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  𝑐 )  ∧  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐵  ∧  𝑐  <  𝐶 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑐  =  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  𝑐 )  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							eqeq2d | 
							⊢ ( 𝑐  =  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( 𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  𝑐 )  ↔  𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑐  =  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( 𝑐  <  𝐶  ↔  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐶 ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							3anbi13d | 
							⊢ ( 𝑐  =  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  →  ( ( 𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  𝑐 )  ∧  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐵  ∧  𝑐  <  𝐶 )  ↔  ( 𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  ∧  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐵  ∧  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐶 ) ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							rspc2ev | 
							⊢ ( ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  ∈  ℝ  ∧  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  ∈  ℝ  ∧  ( 𝐴  =  ( ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  +  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) ) )  ∧  ( 𝐵  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐵  ∧  ( 𝐶  −  ( ( ( 𝐵  +  𝐶 )  −  𝐴 )  /  2 ) )  <  𝐶 ) )  →  ∃ 𝑏  ∈  ℝ ∃ 𝑐  ∈  ℝ ( 𝐴  =  ( 𝑏  +  𝑐 )  ∧  𝑏  <  𝐵  ∧  𝑐  <  𝐶 ) )  | 
						
						
							| 42 | 
							
								8 9 26 31 32 41
							 | 
							syl113anc | 
							⊢ ( 𝜑  →  ∃ 𝑏  ∈  ℝ ∃ 𝑐  ∈  ℝ ( 𝐴  =  ( 𝑏  +  𝑐 )  ∧  𝑏  <  𝐵  ∧  𝑐  <  𝐶 ) )  |