| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 2 |
1 1
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 3 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 4 |
3 1
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐴 ) ∈ ℝ ) |
| 5 |
3 3
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐵 ) ∈ ℝ ) |
| 6 |
|
simp1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 7 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
| 8 |
1 3 7
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 9 |
|
lemul1a |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) |
| 10 |
1 3 6 8 9
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐴 ) ) |
| 11 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 0 ∈ ℝ ) |
| 12 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 0 ≤ 𝐴 ) |
| 13 |
11 1 3 12 7
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) |
| 14 |
|
ltmul2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 15 |
1 3 3 13 14
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
| 16 |
7 15
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) |
| 17 |
2 4 5 10 16
|
lelttrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) |