Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt2mul2divd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
lt2mul2divd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
lt2mul2divd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
lt2mul2divd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) | ||
Assertion | lt2mul2divd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2mul2divd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | lt2mul2divd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
3 | lt2mul2divd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
4 | lt2mul2divd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) | |
5 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
6 | 4 | rpregt0d | ⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) |
7 | lt2mul2div | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) ) | |
8 | 1 5 3 6 7 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) ) |