Metamath Proof Explorer


Theorem lt2mul2divd

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses lt2mul2divd.1 ( 𝜑𝐴 ∈ ℝ )
lt2mul2divd.2 ( 𝜑𝐵 ∈ ℝ+ )
lt2mul2divd.3 ( 𝜑𝐶 ∈ ℝ )
lt2mul2divd.4 ( 𝜑𝐷 ∈ ℝ+ )
Assertion lt2mul2divd ( 𝜑 → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 lt2mul2divd.1 ( 𝜑𝐴 ∈ ℝ )
2 lt2mul2divd.2 ( 𝜑𝐵 ∈ ℝ+ )
3 lt2mul2divd.3 ( 𝜑𝐶 ∈ ℝ )
4 lt2mul2divd.4 ( 𝜑𝐷 ∈ ℝ+ )
5 2 rpregt0d ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
6 4 rpregt0d ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) )
7 lt2mul2div ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) )
8 1 5 3 6 7 syl22anc ( 𝜑 → ( ( 𝐴 · 𝐵 ) < ( 𝐶 · 𝐷 ) ↔ ( 𝐴 / 𝐷 ) < ( 𝐶 / 𝐵 ) ) )