| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt2msq | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  ·  𝐴 )  <  ( 𝐵  ·  𝐵 ) ) ) | 
						
							| 2 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | sqval | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 5 |  | sqval | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵 ↑ 2 )  =  ( 𝐵  ·  𝐵 ) ) | 
						
							| 6 | 4 5 | breqan12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  <  ( 𝐵 ↑ 2 )  ↔  ( 𝐴  ·  𝐴 )  <  ( 𝐵  ·  𝐵 ) ) ) | 
						
							| 7 | 2 3 6 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴 ↑ 2 )  <  ( 𝐵 ↑ 2 )  ↔  ( 𝐴  ·  𝐴 )  <  ( 𝐵  ·  𝐵 ) ) ) | 
						
							| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴 ↑ 2 )  <  ( 𝐵 ↑ 2 )  ↔  ( 𝐴  ·  𝐴 )  <  ( 𝐵  ·  𝐵 ) ) ) | 
						
							| 9 | 1 8 | bitr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴 ↑ 2 )  <  ( 𝐵 ↑ 2 ) ) ) |