Description: The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 12-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcl.1 | ⊢ 𝐴 ∈ ℝ | |
lt2sq.2 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | lt2sqi | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcl.1 | ⊢ 𝐴 ∈ ℝ | |
2 | lt2sq.2 | ⊢ 𝐵 ∈ ℝ | |
3 | 1 2 | lt2msqi | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) ) |
4 | 1 | recni | ⊢ 𝐴 ∈ ℂ |
5 | 4 | sqvali | ⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) |
6 | 2 | recni | ⊢ 𝐵 ∈ ℂ |
7 | 6 | sqvali | ⊢ ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) |
8 | 5 7 | breq12i | ⊢ ( ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) < ( 𝐵 · 𝐵 ) ) |
9 | 3 8 | bitr4di | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑ 2 ) < ( 𝐵 ↑ 2 ) ) ) |