Step |
Hyp |
Ref |
Expression |
1 |
|
lt3addmuld.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
lt3addmuld.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lt3addmuld.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
lt3addmuld.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
lt3addmuld.altd |
⊢ ( 𝜑 → 𝐴 < 𝐷 ) |
6 |
|
lt3addmuld.bltd |
⊢ ( 𝜑 → 𝐵 < 𝐷 ) |
7 |
|
lt3addmuld.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
8 |
1 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
9
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
11 |
10 4
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝐷 ) ∈ ℝ ) |
12 |
1 2 4 5 6
|
lt2addmuld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < ( 2 · 𝐷 ) ) |
13 |
8 3 11 4 12 7
|
lt2addd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) < ( ( 2 · 𝐷 ) + 𝐷 ) ) |
14 |
10
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
15 |
4
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
16 |
14 15
|
adddirp1d |
⊢ ( 𝜑 → ( ( 2 + 1 ) · 𝐷 ) = ( ( 2 · 𝐷 ) + 𝐷 ) ) |
17 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( 2 + 1 ) = 3 ) |
19 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 + 1 ) · 𝐷 ) = ( 3 · 𝐷 ) ) |
20 |
16 19
|
eqtr3d |
⊢ ( 𝜑 → ( ( 2 · 𝐷 ) + 𝐷 ) = ( 3 · 𝐷 ) ) |
21 |
13 20
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) < ( 3 · 𝐷 ) ) |