Step |
Hyp |
Ref |
Expression |
1 |
|
lt4addmuld.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
lt4addmuld.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lt4addmuld.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
lt4addmuld.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
lt4addmuld.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
6 |
|
lt4addmuld.alte |
⊢ ( 𝜑 → 𝐴 < 𝐸 ) |
7 |
|
lt4addmuld.blte |
⊢ ( 𝜑 → 𝐵 < 𝐸 ) |
8 |
|
lt4addmuld.clte |
⊢ ( 𝜑 → 𝐶 < 𝐸 ) |
9 |
|
lt4addmuld.dlte |
⊢ ( 𝜑 → 𝐷 < 𝐸 ) |
10 |
1 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
11 |
10 3
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) ∈ ℝ ) |
12 |
|
3re |
⊢ 3 ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
14 |
13 5
|
remulcld |
⊢ ( 𝜑 → ( 3 · 𝐸 ) ∈ ℝ ) |
15 |
1 2 3 5 6 7 8
|
lt3addmuld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + 𝐶 ) < ( 3 · 𝐸 ) ) |
16 |
11 4 14 5 15 9
|
lt2addd |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) + 𝐷 ) < ( ( 3 · 𝐸 ) + 𝐸 ) ) |
17 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → 4 = ( 3 + 1 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝜑 → ( 4 · 𝐸 ) = ( ( 3 + 1 ) · 𝐸 ) ) |
20 |
13
|
recnd |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
21 |
5
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
22 |
20 21
|
adddirp1d |
⊢ ( 𝜑 → ( ( 3 + 1 ) · 𝐸 ) = ( ( 3 · 𝐸 ) + 𝐸 ) ) |
23 |
19 22
|
eqtr2d |
⊢ ( 𝜑 → ( ( 3 · 𝐸 ) + 𝐸 ) = ( 4 · 𝐸 ) ) |
24 |
16 23
|
breqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) + 𝐷 ) < ( 4 · 𝐸 ) ) |